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1. Introduction

Warehouse design has gained a more sophisticated and robotized structures when compared with the past 
(Hashemkhani Zolfani et al., 2023), mainly in the order picking process, which is still the most laborious and 
expensive process, often suffering from poor ergonomics, and requiring the willingness of high-quality labor 
to work in shifts (van Gils et al., 2018b; Azadeh et al., 2019). The order picking process performance depends 
heavily on the layout, storage system, and operational control policies (Tutam & White, 2024), which are crucial 
warehouse design decisions (Roodbergen et al., 2015).

Strategic operations decisions such as layout (van Gils et al., 2018b), tactical decisions (e.g., storage and 
picking control policies), and operational decisions (e.g., routing control policies) (Rouwenhorst et al., 2000) 
are interdependent (De Koster et al., 2007). Since warehouse design decisions are at different planning horizons 
and there is a strong interrelationship between them, there is a need to analyze them simultaneously (Altarazi 
& Ammouri, 2018).

Choosing the best combination between the type of layout and the operational control policies depends on 
the real operating conditions of the warehouse and the company’s objectives (van Gils et al., 2018a). The internal 
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operations of a warehouse are stochastic (Roy et al., 2015; Zhou et al., 2022), as orders have different quantities 
of lines and different items per line to collect (Shqair et al., 2014). The congestion between order pickers 
(Heath et al., 2013) and the time between order arrivals also matter (Chen et al., 2010). On the one hand, these 
facts suggest that simulation is a suitable method to address the warehouse performance evaluation during the 
design phase (Pourhassan & Raissi, 2017), thus evaluating scenarios with variations in the order profile, demand 
growth, among other variables (Baker & Canessa, 2009). On the other hand, a structured Scenario Planning 
(SP) method during the design process is suitable to evaluate the alternatives (e.g., the combination of storage 
policy, picking policy, routing policy and layout) in favorable and unfavorable scenarios that the company may 
face considering its decision-makers’ experience (Ram et al., 2011).

The literature attests to the successful application of simulation and SP to study the performance of warehouses 
under different design conditions, simultaneously addressing different combinations of the alternatives of two 
or more decisions, regarding layout, tactical and operational control policies, such as: storage control policies 
and layout (Petersen & Aase, 2017); routing control policies and layout (Petersen, 1997); picking and storage 
control policies (Silva et al., 2020); storage and routing control policies (Chan & Chan, 2011; Franzke et al., 
2017); picking and routing control policies (Briant et al., 2020; Cao et al., 2023), picking, storage and routing 
control policies (Chackelson et al., 2013; Chen et al., 2010; van Gils et al., 2019); storage and routing control 
policies and layout (Altarazi & Ammouri, 2018; Roodbergen et al., 2015; Shqair et al., 2014); and picking, 
storage and routing control policies and layout (van Gils et al., 2018a).

However, the warehousing literature on order picking mainly considers minimizing the time or distance traveled 
as a single objective. On the other hand, warehouse design requires evaluating other criteria/objectives (Silva et al., 
2015; Montanari et al., 2021), such as total (operational and investment) costs, use of resources (space, equipment 
and workers), and service level (van Gils et al., 2018b; Ahmadi Keshavarz et al., 2021). Warehouse managers in 
a supply chain have to look beyond single-dimensional performance and consider trade-offs between different 
criteria (Chen et al., 2010; Derhami et al., 2020; Silva et al., 2015) to align warehouse efficiency measures with 
the customers’ requirements, since some initiatives to improve one of the previously cited criteria may negatively 
impact the performance on another criterion (Chackelson et al., 2013; Fontana et al., 2020a). Therefore, the 
warehouse design can be characterized as a multicriteria problem with conflicting objectives (service level x 
cost, for example) and many alternatives for analysis and selection (Vieira et al., 2017).

Most studies on warehouse design decisions analyze the interactions of control policy combinations on 
warehouse performance (van Gils et al., 2018b; Ahmadi Keshavarz et al., 2021). However, to help decision makers 
(warehouse managers) to evaluate and select the ideal combination between alternatives of control policies 
and layout for warehouse design when considering real operations conditions, studies on ranking and selection 
procedures (Chen et al., 2010; Roodbergen et al., 2015) are more useful in practice than interactions studies. 
The former studies usually offer an ideal combination according to the input data used in contrast with the 
latter ones. Furthermore, these simulation studies are scarce (van Gils et al., 2018b). Although a Multicriteria 
decision analysis (MCDA) (operating cost vs service level criterion) has already been combined with simulation 
by Chen et al. (2010), they do not consider different aisle layouts and picking policies alternatives. On the 
other hand, Roodbergen et al. (2015) considered one criterion (total travel distance) in their method as a single 
objective to minimize. Yet, no study has considered congestion picking, which can reduce the order picking 
performance and efficiency in a multiple order pickers environment (Elbert et al., 2017; Franzke et al., 2017), 
as far as we know.

Thus, this study proposes a methodology for evaluating, classifying and selecting the most robust combination 
of layout alternatives (vertical or horizontal aisles orientation) and operational control policy alternatives (picking, 
storage and routing) considering simultaneously the service level, costs and resource utilization criteria according 
to the decision-makers’ preferences and the picking congestion. We define a more robust alternative as the 
one that performs reasonably well for a variety of scenarios (Ram et al., 2011). Furthermore, we propose an 
innovative framework, which is inspired by the combination of MCDA and SP approaches, and Discrete Event 
Simulation (DES) to provide a generic structure that can be applied to implementing different warehouse design. 
Therefore, these combined approaches could provide suitable solutions to addressing this problem to consider 
more aspects simultaneously.

The latest studies in this domain have discussed tactical and operational aspects of the warehouse design to 
meet market aspects (demand, profitability and sensitivity of the customers towards the products) that influence 
the warehouse design (Yerlikaya, 2020; Fontana et al., 2020a), and to rank products and assigning them inside 
warehouses (Silva et al., 2015; Micale et al., 2019), including the order picking (weight, space and demand, 
time) (Fontana & Nepomuceno, 2017). Differently to these studies that address specific problems applying the 
MCDA approach in warehouse operations, our proposal provides a more generic framework for warehouse design, 
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based on a set of criteria according to the decision-makers’ preferences. Montanari et al. (2021) investigated 
various routing policies of pickers, criteria, and uncertain aspects using combined methods; however, they did 
not consider different vertical and horizontal layout aisles and scenarios to address several alternatives.

The contribution unfolds in two aspects:

(1) Although the MCDA and DES have been applied in the ranking and selection procedures in internal warehouse 
design decisions (Timperio et al., 2020), the combination of those methods for supporting those decisions with 
SP (Chen et al., 2010) may be useful. For this SP, we applied an innovative Morphological Analysis (MA) to reduce 
the number of alternative combinations and evaluate the uncertainties at their best (worst) levels.

(2) The literature on the effect of congestion in warehousing design has been overlooked by most of the order picking 
studies (Silva et al., 2020; van Gils et al., 2018b; Roodbergen et al., 2015; Casella et al., 2023). Our framework 
also considers the evaluation of the vertical and horizontal layout of aisles as alternatives beyond the number 
and length of aisles in the previous research.

The remainder of this paper is structured as follows. Section 2 presents a literature review about DES-based 
warehouse design studies and how MCDA and SP can help deal with warehouse design. Our proposed framework 
is detailed in section 3. In section 4, a scenario analysis of the application is presented. The paper ends with 
some conclusions, limitations, and suggestions for future research.

2. Literature review

2.1. DES-based studies in warehouse design

Table 1 summarizes the characteristics of the previous studies that have addressed, simultaneously or not, 
the evaluation of alternatives of storage, picking and routing control policies in manual order picking warehouse 
design through DES. Group A studies conduct the evaluation alternatives of one control policy considering the 
other control policies as fixed. For example, one study considered the total travel distance for the order picker 
to complete a given pick-list, varying the placement of the cross aisles and considering different storage policies 
(random, across-aisle and within-aisle) (Petersen & Aase, 2017). Studies that simultaneously evaluate alternatives 
of two control policies are listed in group B. For example, one analysis identified how the mean throughput time 
needed to fulfill a single order is affected by the congestion between order pickers under different combinations 
of storage policies and routing policies for the discrete picking policy (Franzke et al., 2017). Finally, group C 
studies simultaneously consider alternatives of the three control policies. One example of such group is van 
Gils et al. (2018a) who evaluated the average travel distance by the order pickers under different combinations of 
five storage policies (random, diagonal, perimeter, across-aisle and within-aisle), three picking policies (discrete, 
batch and zone) and five routing policies (traversal, return, largest gap, aisle by aisle and optimal).

The warehouse performance evaluation under different control policy alternatives is generally combined 
with different warehouse layout alternatives, such as: the layout shape (Petersen, 1997; Petersen & Aase, 2004), 
the quantity of cross aisles (Petersen & Aase, 2017; Roodbergen & Koster, 2001; Roodbergen et al., 2015), 
the quantity and length of picking aisles (van Gils et al., 2018b; Petersen, 2002; Roodbergen & Koster, 2001; 
Roodbergen et al., 2015), the start/end picking route point (Petersen, 1997; Petersen & Aase, 2004; Petersen 
& Schmenner, 1999), and the aisle layout (Altarazi & Ammouri, 2018). Although different aisle layouts (such as 
vertical, horizontal, fishbone, etc.) can provide different results in warehouse performance (Altarazi & Ammouri, 
2018), evaluating them is less frequent in those studies.

Other factors (or other picking planning problems) are also considered at different levels, such as throughput 
(Altarazi & Ammouri, 2018; Petersen, 2000; Petersen & Schmenner, 1999), batch capacity, order sequencing 
(van Gils et al., 2019), time between order arrivals (Chen et al., 2010), the picker zoning policy (van Gils et al., 
2019) or the number of order pickers (Altarazi & Ammouri, 2018; Franzke et al., 2017; van Gils et al., 2019).

Control policies, layout alternatives and other factors are commonly analyzed in interaction studies, where 
the aim is to see how the combination of these decision elements (considering their alternatives or levels, affects 
warehouse performance, and thus the studies provide general guidance to warehouse managers on how to set 
up/design their order picking system. Usually, these studies perform a statistical analysis showing tables and 
graphics for interpretations (see van Gils et al., 2019) for an example). On the other hand, for a more suitable 
warehouse design solution managers may prefer to use a ranking and selection procedure since the method 
asks for their warehouse real operation parameters and, as an output, a combination of control policies and 
layout is presented as an ideal one.
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Table 1. Simulation studies on control policy evaluation in warehouses.

Group Studies
Control policy alternatives Layout 

alternatives
Criteria 

evaluated
Stochastic 
behavior

Type of work
storage picking routing

A Bahrami et al. (2019) 2 1 1 vertical travel distance pick list size interactions

order lead 
time

Elbert et al. (2017) 1 1 7 vertical total picking 
time

no interactions

Petersen & Aase (2017) 3 1 1 vertical distance 
travelled to 
pick a list

no interactions

Dekker et al. (2004) 1 1 5 horizontal average route 
length per 

order

pick list size interactions

Petersen (2002) 3 1 1 vertical distance 
travelled to 
pick a list

no interactions

Roodbergen & Koster (2001) 1 1 6 vertical average travel 
time to pick 

a list

no interactions

Petersen (2000) 1 4 1 vertical mean daily 
labor mean 
length of 
day mean 

percentage of 
late orders

pick list size interactions

Petersen (1997) 1 1 6 vertical distance 
travelled to 
pick a list

no interactions

B Franzke et al. (2017) 4 1 7 vertical mean 
throughput 
time to pick 

a list

no interactions

Montanari et al. (2021) 2 1 2 vertical travel distance pick list size interactions

Altarazi & Ammouri (2018) 2 1 2 vertical cycle time pick list size interactions

horizontal

fishbone order arrival

Roodbergen et al. (2015) 6 1 5 vertical total travel 
distance

pick list size method

Chan & Chan (2011) 3 1 3 vertical total travel 
distance total 
retrieval time

no interactions

Heath et al. (2013) 3 1 2 vertical total mean 
congestion 

time

interactions

total mean 
travel time

Chen et al. (2010) 3 1 4 vertical service level pick list size method

operational 
costs

order arrival

Petersen & Schmenner (1999) 4 1 6 vertical distance 
traveled to 
pick a list

no interactions

Petersen (1999) 3 1 4 vertical total route 
time to pick 

a list

no interactions

C van Gils et al. (2018a) 5 3 5 vertical average travel 
distance

pick list size interactions

Chackelson et al. (2013) 2 2 2 vertical order maturity 
time total 

picking time

retrieval time interactions

van Gils et al. (2019) 5 2 5 Horizontal total picking 
time total 
wait time

pick list size interactions

Petersen & Aase (2004) 2 2 3 vertical total 
fulfillment 

time

pick list size interactions
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Chen et al. (2010) pointed out which combination of storage policy, routing policy, batch formation rule and 
batch capacity is the most efficient (operating cost vs service level) for the warehouse with vertical layout under 
different scenarios with a variation of time between order arrival and pick list size, using DEA (Data Envelopment 
Analysis) and Monte Carlo simulation. Roodbergen et al. (2015) proposed a design method to simultaneously 
determine the vertical layout (number and length of picking aisles and number of cross aisles), the storage 
and routing control policies, considering data such as: physical limitations (to the building), required storage 
capacity, systems used (e.g. pallet positions, flow racks and/or shelving), aisle width and cross-aisle width. These 
studies can be replicated for specific cases (observing the limitations of the studies), and thus they may find a 
viable solution for warehouse design.

Methods or interactions studies use performance measures related to the time spent or distance traveled in the 
picking process, usually basing the decision or analysis on a single criterion. For instance, total mean congestion 
time and total mean travel time are employed by Heath et al. (2013), total order picking time and waiting time 
by van Gils et al. (2019) and travel distance and order lead time by Bahrami et al. (2019), while Chan & Chan 
(2011) use the order retrieval time and travel distance performance criteria, reporting that an alternative can have 
a good performance on one criterion but may perform poorly on other criteria. Chackelson et al. (2013) used order 
maturity time and total picking time and pointed out the existence of trade-offs between these criteria and that 
the company’s objectives and market conditions must be considered in the decision of the best design alternative.

Moreover, from the point of view of the stochastic behavior of warehouse activities, it is important to 
consider the congestion problem in the analysis. Picker congestion (or picker blocking) occurs when more than 
a single order picker works in the same narrow aisle. This has been overlooked in previous works that use only 
one order picker in their analyzes (e.g., Petersen & Aase, 2017) or that consider multiple order pickers but with 
large enough aisles to disregard the effects of congestion (e.g. Altarazi & Ammouri, 2018).

Therefore, the literature indicates that few studies address more than one alternative regarding each of the 
three control policies simultaneously (van Gils et al., 2018a; Petersen & Aase, 2004; Chackelson et al., 2013). 
Studies that propose evaluation and selection methods of the best combination of control policies (Chen et al., 
2010) and control policies and layout (Roodbergen et al., 2015) are also scarce. Although many layout decisions 
should be taken in warehouse design, the aisle layout decision is relatively unexplored (Altarazi & Ammouri, 2018) 
since horizontal layout does not appear often. In addition, congestion is not often considered in the analyzes 
of previous studies, mainly in the method studies. Finally, the trade-off analysis in the warehouse design phase 
with multiple performance criteria (Chackelson et al., 2013) has also been neglected.

Our framework fills these gaps by proposing an evaluation and selection method of the most robust 
combination between storage policy, picking policy, routing policy and aisle layout alternatives at warehouse 
design phase. Moreover, it addresses the congestion problem from an MCDA perspective, by considering the 
trade-offs among the company’s objectives and market conditions.

2.2. Multicriteria decision analysis and scenario planning as an approach for warehouse design

MCDA aims to help structuring complex problems with multiple and conflicting criteria to support the decision-
maker in selecting alternatives (Logullo et al., 2022) in warehouse operations (Fontana et al., 2020b), considering 
distribution strategy, internal activities, and the characteristics of the distribution operations (Vieira et al., 2017).

The combination of MCDA with scenario planning can be useful in making warehouse design decisions, as 
warehouses have to adapt to uncertainties from outside their supply chains and from internal warehouse activities. 
Each source of uncertainty can have an unforeseen impact on strategic, tactical or operational decisions, but they 
must be met on a daily basis in practice (Gong & Koster, 2011; Yerlikaya, 2020). SP uses imaginary future scenarios 
to help decision-makers reflect on the key uncertainties they face and develop strategies to address these uncertainties 
(Montibeller et al., 2006). Therefore, scenarios should be relevant to decision-makers’ concerns and describe different 
futures generically, represented by situations where the system may be in a period of time, trying to link the uncertainties 
that are considered inherent in the future without addressing probabilities for these futures (Ram et al., 2011).

Scenario building can be aided by tools such as: the four quadrant matrix, the Wilson matrix, MA, consistency 
analysis, and cross-impact analysis (Amer et al., 2013) parabolic aisles-based method (Zhang et al., 2021). MA is 
suitable for developing scenarios because it can deal with a large amount of quantitative and qualitatively 
defined uncertainties; it encourages the investigation of multiple combinations of limit values efficiently; and 
helps to describe scenarios at a level of detail that provides sufficient information to the decision-makers to 
elicit their preferences (Ram et al., 2011). Hence, MA enables to visualize the various elements and dimensions 
of the system under analysis, and thus develop scenarios for the future and check if they are plausible to the 
decision-makers (Amer et al., 2013).
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The number of scenarios to develop is also an important issue. It is difficult to establish the ideal quantity, 
since it depends on the specificity of the application and the objectives of the analysis. However, scenario 
development must meet certain criteria: at least two scenarios are needed to reflect uncertainties; each scenario 
must be plausible, that is, they must evolve logically (in a cause/effect manner) from past and present and 
reflect current knowledge; scenarios must be internally consistent, that is, within scenarios the events must 
be related through cause/effect arguments, which cannot be flawed; and scenarios should be relevant to the 
decision-maker’s problem. They must be able to generate useful, comprehensive and challenging ideas and 
provide testing conditions for these ideas against which the decision-maker can consider future business plans, 
strategies and directions (i.e., course alternatives).

The MCDA and SP combination has been used for decision-making on strategic issues, and therefore for 
long-term horizons (see Balarezo & Nielsen, 2017 for an overview). The integrated use of SP and MCDA is 
a powerful combination for strategic decision-making (Stewart et al., 2013). SP is limited in evaluating the 
alternative strategies generated in its analysis, and MCDA can be useful in this assessment as it is a tool capable 
of integrating multiple criteria and alternative analysis while considering trade-offs. On the other hand, MCDA 
does not consider different scenarios in its analysis, and SP can assist in this process.

However, this combination is not trivial as it adds one more dimension to the analysis in the already complex 
multicriteria decision analysis, as the alternatives must be evaluated and compared in all criteria and scenarios 
of the analysis (Stewart et al., 2013) to find robust alternatives, which have an adequate performance in all 
scenarios analyzed (Montibeller et al., 2006).

3. Methodology

Due to the challenges of providing a great combination of the type of layout and the operational control 
policies, considering the operating conditions of the warehouse, a framework is proposed in Figure 1. Combining 
the different methods (DES, MCDA and SP) aims to overcome the limitations when these methods are applied 
alone. Although MCDA can deal with both qualitative and quantitative static performance of alternative (which 
we call “static criteria”), it is rarely used when the performances of alternatives have a dynamic characteristic 
(which we call “dynamic criteria”), and DES can help address these criteria. On the other hand, SP is a tool 
to create future, plausible and relevant scenarios for the decision problem (Schoemaker, 1995), but it fails to 
evaluate alternatives under the created scenarios, and MCDA can help in this task (Goodwin & Wright, 2004). 
Moreover, the simulation helps to detail the created scenarios (Baker & Canessa, 2009), quantifying them 
through the criteria used in the MCDA.

Figure 1. Framework for evaluating and selecting the combination of control policies and layout in warehouses.
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As Figure 1 shows, the MCDA+SP model depends on some (a) decision-maker’s inputs such as criteria 
preferences, criteria objectives, value preferences and uncertainty levels, and through the (b) static and dynamic 
criteria, (c) evaluation of the alternatives defined by SP, of control policies and aisle layouts. A DES model 
helps the MCDA+SP model in evaluating the dynamic criteria according to the (d) warehouse storage system 
input data, and the warehouse operation input data. The operation input data, such as the “pick list size” and 
“time between order arrival” comes from scenario planning (uncertainty levels adopted by the decision-maker’s 
input). The output data of the proposed structure consists of a set of scenarios that present the performance 
of each combination of storage, picking and routing policies with the horizontal or vertical layout of the aisles 
(alternatives). Based on comparing the performance of the scenarios, it is possible to find the most robust 
combination of policies and layout (Montanari et al., 2021).

3.1. Stepwise description of the framework

Our proposal follows an adaptation of the Ram et al. (2011) method for the evaluation of decision alternatives 
under scenario planning with MA. In the proposed framework, the performances of the dynamic criteria are 
obtained through a DES model developed according to the principles proposed by Kelton et al. (2007), and the 
decision-maker’s preferences are captured by the Simple Multi-attribute Rating Technique (SMARTS) (Edwards 
& Barron, 1994). The uncertainties, criteria and alternatives (described below) are obtained from the literature 
review. In our study, the uncertainties considered are the pick-list size, the time between order arrival and order 
demand (Fontana & Nepomuceno, 2017).

To support the steps of the proposed framework, a hierarchical structure of the decision-making objectives 
(with associated criteria that measure the achievement of these objectives) is considered (Figure 2). Some of the 
criteria were surveyed by the 21 studies (Table 1) and are commonly used in warehouse design (De Koster et al., 
2007) or operation.

Figure 2. Hierarchical structure of the decision-making objectives.

The hierarchical structure considers three criteria (service level, resources and costs) and their sub-criteria to 
assist the decision-maker’s analysis. Regarding the sub-criteria “total picking time” and “mean time to pick an 
order”, Chackelson et al. (2013) report that they are mainly influenced by the picking and routing policies, as 
well as the pick-list size (Montanari et al., 2021). Yet, some decisions can improve warehouse performance on 
one criterion while worsening it on another criterion.

The “mean order picker utilization” criterion assumes that for a fixed number of order pickers, different 
layout and operating policy combinations will result in different utilization rates. On the order hand, for the 
same area, different aisle layouts can require different quantities of storage equipment or storage capacity 
(Derhami et al., 2020), and consequently different occupancy rates, which is captured by the “warehouse space 
utilization” criterion. Therefore, this criterion forms a trade-off with the “warehouse equipment cost” criterion. 
Furthermore, there is a trade-off between “warehouse space utilization” and picking time, since the warehouse 
layout, which provides the maximum utilization of space, is different from one that minimizes handling distance.

Finally, the sub-criterion “operating costs” forms the well-known cost vs service level trade-off (Chen et al., 
2010; Min, 2009; Vieira et al., 2017). It is worth observing that this criterion is connected to the “total picking 
time” criterion but not directly, as the operating costs vary according to working shifts which depend on labor 
legislation.
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Followed by the criteria, the development of alternatives is based on the “value-focused thinking” approach 
(Logullo et al., 2022; Keeney, 1996). They are created from combinations of aisle layouts and operational control 
policies. Thus, 32 alternatives were determined based on the combination of 2 x 4 x 2 x 2 layout and operation 
control policies (2 possibilities for layout and 4, 2, 2, possibilities, respectively for storage, picking and routing 
policies), as seen in Table 2. Two aisle-layout alternatives are considered: vertical or horizontal. Storage control 
policy alternatives are classified into random or class-based (within-aisle, across-aisle or diagonal) (Roodbergen et al., 
2015). Picking policies can be discrete or batch (Chackelson et al., 2013; van Gils et al., 2018a), considering 
batch formation using the First Come First Served (FCFS) method due to its ease of application compared to 
savings and seed cluster heuristics (van Gils et al., 2018a). Concerning routing control policies, the simplest 
routing heuristics, traversal or return, were considered for the decision (Franzke et al., 2017; Roodbergen et al., 
2015). For example, the index alternative “1111” (see the first line of Table 2) combines vertical layout, random 
storage policy, discrete picking policy and transversal routing policy.

Table 2. Possible alternatives.

Layout
Operational control policies

Storage Picking Routing

Vertical 1 Random 1 Discrete 1 Traversal 1

Horizontal 2 Within-aisle 2 Batch 2 Return 2

Across-aisle 3

Diagonal 4

The proposed framework consists of the following four steps, employed later in a hypothetical case. See the 
Supplementary Material (SM) for more details, please.

 Step 1: Development of the scenarios. Scenario development is supported by MA in the framework to drastically 
reduce the number of criteria combinations. The technique consists of asking decision-makers to think about the 
uncertainties at their best and worst levels. To maintain consistency, the decision-makers should consider only 
the levels they believe are plausible. In order to decrease the number of possible combinations for analysis, it is 
recommended to assume all uncertainties at their best (worst) levels and swing each uncertainty at a time to their 
worst (best) level. This helps the decision-maker observe possible trade-offs and thus find new opportunities. Each 
combination of levels of uncertainty will represent a scenario for the analysis. Further details on the technique 
can be found in Amer et al. (2013) and Ram et al. (2011). (Also, can be seen in Step 1 in SM for details).

 Step 2: Criteria weight elicitation. Weight elicitation is done by the swing weighting technique from a decision-
maker´s point of view. Operationally, the technique starts from a hypothetical situation where the decision-makers 
indicate a hypothetical alternative with the worst performance in all attributes. This chosen attribute (criterion) 
is set to 100 points (representing the best level). The decision-maker then sequentially chooses the remaining 
attributes, one by one, comparing each of them to the first selected (see Step 2 in SM for details).

 Step 3: Overall assessment of each alternative. This step aims to measure the performance of each alternative 
in each scenario. Therefore, a weighted average is made of the performances attributed to an alternative in each 
criterion, considering the weights of each criterion. This allows us to calculate how an alternative performs across 
all criteria together in each scenario. More specifically, the performance of an alternative k under scenario r 
[denoted Performance ( ,k ra y )] using the SMARTS method considering scenarios, follows Equation 1 (Ram et al., 
2011), where each scenario is considered separately for a set of j criterion.

( )
1

 ,  (   ) 
n

k r kir ir
j

Performance a y v x w
=

=∑   (1)

where irw  is the weight assigned to criterion i at scenario r and kirv  is the performance of alternative k in 
criterion i at scenario r, in other words, the alternative’s score. The performance of an alternative on a criterion 
must be measured by a value function elicited with the bisection method (Goodwin & Wright, 2004). Often, the 
objectives taken into consideration in warehouse design are to: minimize the total (investment and operational) 
cost, minimize the total picking time, minimize the throughput time of an order, maximize the use of space 
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(layout), maximize the use of equipment, maximize the use of labor and maximize the accessibility to all items 
(Chen et al., 2017; De Koster et al., 2007).

The simulation model results for each alternative regarding the dynamic criteria “total picking time”, “mean 
time do pick an order” and “mean order picker utilization” are evaluated with the value functions of these 
criteria to obtain the performances of the alternative on these criteria. The same can be done for the “operational 
costs” dynamic criterion and “warehouse space utilization” and “warehouse equipment costs” static criteria.

The discrete event-based simulation model in the hypothetical case in which the framework was tested used 
the Arena software (academic full version 14.7) to represent a manual warehouse order-picking activity (see 
flowchart in Appendix A, Figure A1). Arena has been successfully used in other studies to represent warehouse 
activities (Altarazi & Ammouri, 2018; Chan & Chan, 2011).

The input data is divided into two groups: storage system and operation. The data regarding the storage 
system are: the number of shelves per aisle; the distance between the centers of shelves; the distance between 
the centers of picking aisles; the number of picking aisles; and the across aisle width. Operation related data 
include: the number of order pickers; the picker travel rate; the pick-list size; the retrieval time; and the time 
between the order arrival. The number of order pickers is a tactical decision correlated to warehouse activity 
performance (Rouwenhorst et al., 2000) and picking congestion (Franzke et al., 2017). Except for the number 
of order pickers and picker travel rate, generally these data have a stochastic behavior and can be obtained by 
collecting them in loco or in a historical database or estimated from an expert in the company (Kelton et al., 2007).

The DES model design allows the configuration of any warehouse shape since it depends on the quantity 
and length of picking aisles and the number of shelves per aisle. When we have an area restriction and the 
storage capacity can vary, the 2:1 (width: depth) shape is recommended as it usually offers better performance 
for picking. On the other hand, when the warehouse capacity is fixed and it is possible to vary the area, it is 
better to adopt deeper shapes (Petersen, 1997). Moreover, the model is prepared for shelves and flow rack storage 
systems. For instance, adding vertical speed makes it possible to configure the model for a pallet storage system 
using a forklift. Finally, the model assumes that the pick/deposit point (p/d) is located in the middle of the front 
cross-aisle, as this increases the picking performance when compared to the p/d point located in the corner of 
the front cross-aisle (Petersen et al., 2004). The pick-list size can comprise one or more lines, according to the 
data inserted, and each line represents a location to visit, where one or more items are collected, also according 
to the data inserted, which requires identifying an aisle and a position.

The model considers the congestion at the entrance of each picking aisle. The order picker is allowed to 
enter both sides of the aisle as long as another order picker does not occupy it. If it is busy, the order picker 
must wait for the aisle vacancy in a queue according to its arrival rank to access it.

Model verification was done by checking the general order-picking activity rules (Tompkins et al., 2010) as 
in Heath et al. (2013): the random storage policy reduces congestion time; and the class storage policy reduces 
picking time.

Each alternative resulting from the combination of layout possibilities and storage, picking and routing 
policies constitutes a scenario to be evaluated employing the simulation model. At the end of the simulation of 
each scenario, a set of results is exported to an electronic spreadsheet, associated with the layout and policies 
under evaluation, which allows the performance of all scenarios to be compared.

 Step 4: Identify the most robust alternative. After completing all the steps, the alternative which most 
closely achieves the overall objective can be identified, that is, the alternative whose layout, storage, picking 
and routing policy combination has the best performance considering its robustness. We adopted the “inter-
scenario robustness index” (Montibeller et al., 2006), which considers the robustness of the less robust scenario. 
The robustness of a given alternative in a given scenario represents the distance between the alternative’s 
performance and the optimal performance (100 points) in that scenario. The longer this distance, the less 
robust the alternative is to that scenario.

4. Scenario analysis and comparison between methods

After applying the proposed framework in a hypothetical case (see the SM, please), a scenario analysis is 
conducted using the four-step procedure. Apart from the “1311” alternative, another six alternatives have an 
inter-scenario robustness index up to 20 points. Within these alternatives, different scenarios can be responsible 
for each alternative´s inter-scenario robustness index (Figure 3). For example, the WWW scenario reflects the 
worst performance in “1211” and “1412” alternatives, while the BWB scenario induces the worst performance in 
“1311”, “1222” and “1322” alternatives. This highlights that under different conditions (i.e. different scenarios), 
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different alternatives (layout and operational policy combinations) may have different performances and a 
scenario analysis is important to find out which alternative better fits in the company’s operation conditions. 
Therefore, this justifies the need to evaluate the layout and operational control policies simultaneously in 
different scenarios and criteria. The proposed framework is expected to offer more freedom in selecting any 
criteria and evaluating different scenarios to be addressed according to the warehousing design, differently from 
Montanari et al., (2021) that focused only on routing policies of pickers under different allocation methods of 
items in a warehouse of fixed layout.

Furthermore, the proposed framework can help the decision-maker (DM) to forecast some inferences about 
the alternatives, criteria, objectives and scenarios considered to make better decisions. By considering our 
hypothetical case, many operational policy combinations (tactical and operational decisions) could be used 
(maintaining the strategic layout decision) if the DM is willing to give up to three points in the inter-scenario 
robustness index (17 to 20 points). For example, for a small decrease in the DM’s criteria objectives (which 
represents, for example, a small increase at the ‘operational costs’) in some scenarios, the DM could adopt the 
“1121” alternative, with a random storage policy which is easier to use than other storage methods and results 
in a more level utilization of all picking aisles (Petersen & Aase, 2004). Fontana et al. (2020a) used a different 
approach based on MCDA and a multi-objective evolutionary algorithm to solve the storage location assignment 
problems, considering the warehouse manager preferences and the stock-keeping unit (SKU) characteristics 
simultaneously. Although their approach considered other criteria and the randomly generated alternatives, 
demonstrating that the approach can also evaluate the worst possible case, there was no robustness index to 
measure the consistency in all possible cases in their approach.

Following this reasoning, different results (Table 3) can be found when looking for the best alternative in a 
comparison between our proposed framework and other studies which seek to minimize single criteria, such as 
the distance traveled in the order picking activity (Montanari et al., 2021; Fontana et al., 2020a; van Gils et al., 
2018a; Petersen, 2002, 1997; Petersen & Aase, 2017; Petersen & Schmenner, 1999; Roodbergen et al., 2015; 
Shqair et al., 2014), mean time to pick an order (Elbert et al., 2017; Franzke et al., 2017; Petersen, 1999) and the 
total picking time (Montanari et al., 2021; Chan & Chan, 2011; Heath et al., 2013; Petersen, 2000; Petersen & 
Aase, 2004). The comparison is made by the largest value found for these criteria among the evaluated scenarios 
as these higher values can be a way to represent the inter scenario robustness index.

Table 3. Comparisons between our proposed framework and other studies.

Alternatives
Proposed framework Total distance travelled Total picking time per day Mean time to pick an order

(points) (x 1000 m) (hours) (minutes)

1311 17 1,418 10.07 3.24

2322 56 656 12.77 5.32

2312 51 893 12.49 2.77

1122 22 1,1167 10.1 6.36

The best alternative regarding the chosen method is bold and underlined. First of all, the “1311” alternative 
would be the best alternative according to the total picking time, as well as according to our proposal. This is 
because the DM considered the “operating cost” and “total picking time” sub-criteria to be the most and third 
most important, respectively. It also considered that both should be minimized. As the operational cost is directly 
related to the total picking time (in this specific case), therefore the choice for this alternative is the same.

Figure 3. The first seven most robust alternatives in each assessed scenario.
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Moreover, “2322” would be the best alternative according to the distance traveled minimization. However, 
this alternative has a high inter-scenario robustness index (56) compared to alternative “1311”, due to its 
inferior performance on the criteria considered in the proposed methodology, more specifically “total picking 
time” and “mean time to pick an order”. This is because the choice based only on the shortest distance does 
not address the congestion problem, not considering this effect on picking times. Therefore, the choice based 
only on the shortest distance traveled may be a mistake. To complete the comparison, “the mean time to pick 
an order” minimization highlights the “2312” alternative. However, its low performance on the “total picking 
time” and consequently on the “operational costs” leads this alternative to the inter-scenario robustness index 
(51). Although Chen et al. (2010) and Fontana et al. (2020a) investigated the robustness of single policies in 
different scenarios, it is more interesting to evaluate the layout and policies combination in all scenarios.

Differently to the previous studies, we consider the congestion approach, which brings more realism to the 
model. In a manual order picking warehouse, it is common to have multiple order pickers in the same picking 
area (van Gils et al., 2019). Additionally, to consider the horizontal aisle layout as an alternative may provide a 
higher practical and managerial relevance (van Gils et al., 2019). In fact, rearranging a warehouse layout has a 
cost (Chen et al., 2010), which can be reduced by searching for a robust layout in the design phase.

Differently from other studies that consider the characteristics of the products to define the allocation policies 
in the warehouse based on the time of order picking (weight, space and demand) (Fontana & Nepomuceno, 2017; 
Micale et al., 2019), our approach offers more freedom in selecting any dynamic/static criteria to be evaluated. 
In this simulated case, the dynamic criteria were the total picking time, mean time to pick an order, mean order 
picker utilization and operational costs, and the static criteria were warehouse space utilization and investment costs.

Our elicitation process can be time-consuming; however, Roodbergen et al. (2015) and Chen et al. (2010) 
methods based on statistical analysis to rank and select an alternative also demand warehouse manager’s time and 
knowledge to evaluate the order picking process (Fontana et al., 2020a). For example, Chen et al. (2010) adopt 
Koenig and Law’s method to obtain multiple superior policy sets, which demand input parameters such as the 
probability of correctly selecting a subset containing the best policy sets, the size of the subset, the number of 
replications in the first-stage sampling and the indifference-zone width. Yet, their methods are highly applicable.

Chen et al. (2010) scenario planning is based on uncertainties such as ‘time between order arrival’ and ‘pick 
list size’, and Montanari et al. (2021) also investigated various routing policies for the picking process. We added 
the MA to develop and analyze scenarios and also ‘daily order demand’, which the warehouse’s daily operation 
may face. Additionally, our approach can consider the workforce level as an uncertainty (an operational decision 
according to van Gils et al. (2018b), since some warehouses accept late orders and quantify the number of 
human resources to provide a high customer service level, which is considered a complicated task by warehouses 
supervisors (van Gils et al., 2018b). Our proposal may be relevant to verify how to design the layout and the 
control policies to minimize the effects of these scenarios.

Regarding the simulation study, the developed model is considered complex as it is prepared to be quickly 
configured to represent a variety of warehousing policies. This issue required extra effort in the modeling phase 
to represent the operational rules and determine how these could be easily selected. The performance of picking 
operations is affected by storage, picking, and routing policies that are represented as closely as possible to real-life 
operations, using the most frequent policies used by warehouses. As a result, a very generic model was obtained, 
capable of being used in a variety of studies that consider similar systems through rapid modification of parameters.

In terms of computational effort, in the hypothetical case evaluated, representative scenarios of the warehouse 
operation were tested over one month in a 10-replication mode. Under the conditions evaluated, the simulation 
of the scenarios took around 3 minutes to run an experiment. This period was considered quick and adequate 
for studying the combinations predicted in the hypothetical case. Obviously, larger instances, in facilities with 
a greater number of aisles and more storage positions will require more time to be executed.

Yet, our method captures the warehouse manager’s preference and experience by means of weight elicitation, 
value functions, scenario planning and inter-scenario robustness index to provide a robust final solution. 
Silva et al. (2015) also used SMARTER, a variant of the SMART, to position the stored products in locations closer 
to the I/O point, contributing to cost reductions in order picking and minimizing delays in product deliveries. 
Silva et al. (2015) suggested the use of other multicriteria methods, with other criteria in a different scenario 
to the warehousing design problems.

Finally, in addition to what has already been discussed related to its practical implementation, our proposed 
framework also can be used: i) to consider the number of order pickers as an uncertainty (e.g., due to labor 
turnover) increasing the number of scenarios to verify; ii) as a tool to evaluate which combination of control 
policies are suitable for an existing vertical or horizontal layout (but the simulation model has to be validated 
and the warehouse space utilization and equipment cost criterion disregarded in such case).
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5. Conclusions

Our framework proposal is new, as the existing scientific literature offers a very limited number of approaches 
to simultaneously address the complexities of warehousing design. The new framework determines the most 
robust combination of the three control policies (storage, picking and routing) and aisle layout (horizontal 
and vertical) simultaneously at the warehouse design phase. Our framework considers multiple criteria that the 
warehouse design phase must meet such as costs, service level and resource utilization. The company’s objectives 
and preferences are considered to evaluate the existing trade-offs. Furthermore, scenarios based on uncertainties, 
which a warehouse’s daily operation can face, are simulated to see how the alternatives perform. In this case, we 
added the MA to reduce the number of alternative combinations and evaluate the uncertainties, as well as to 
reduce the number of alternative combinations, evaluate the uncertainties, and provide a robustness index. None 
of the methods available in the literature can be directly compared to the approach proposed in this paper, either 
focusing on non-compensatory/compensatory MCDA approaches for evaluating the criteria. We can highlight 
the combination of methods (DES, MCDA and SP) applied to a strategic, tactical and operational warehouse 
design problem and the use of MA as our conceptual contribution for supporting warehouse design problems.

Considering the approach to representing warehouse operations using the DES technique, the proposed 
modeling properly enabled the representation of the scenarios under evaluation and provides a structure capable 
of being adjusted to other specific cases, with some flexibility. The most significant difficulty in representing 
warehouse operations via simulation lies in predicting, in the modeling phase, the possible rules to be followed 
in warehouse operations. In our specific case, the configurations of each storage, picking and routing policies, 
and the layout possibilities (and their implications) need to be known in advance. However, most of these 
policies are classic, widely used by practitioners and well reported in the literature. If previously considered in 
modeling, the policies can be quickly configured in the model, by simply changing parameters before running 
each scenario. Specific characteristics of picking operations, such as the number and length of aisles, spacing, 
number of order pickers, etc., also constitute easy parameters to configure, allowing the model to be used in 
similar warehouse systems.

Therefore, as a practical contribution, warehouse managers or planners can use the framework to determine 
which combination of control policies and layout can meet the company’s requirements. Our methodology has 
managerial relevance since it approaches real operation data and a trade-off analysis. Specifically considering 
warehouse operations and their representation through a DES model, two new features were included as 
an evolution of previous studies: aisle congestion and the possibility of configuring the warehouse layout 
horizontally or vertically.

Some limitations can be mentioned regarding our framework: i) the case study in which we tested the 
framework is based on a hypothetical case; a real-world application is necessary to validate the framework, as 
also stated by Micale et al. (2019) and Fontana et al., 2020a); ii) the time consumed during the modeling due to 
the elicitation process; and iii) the lack of qualitative criteria in the assessment(such as safety). These limitations 
provide further opportunities for future research, with real-world case studies, streamlined elicitation protocols 
and the inclusion of qualitative criteria for the analysis.

We suggest other potential avenues for further research as follows: i) the aggregation of more layout 
alternatives such as flying V and fishbone (Zhou et al., 2022; Pohl et al., 2011) as well as cross-aisle layouts 
(Roodbergen et al., 2015) and different depot locations; ii) the aggregation of a mezzanine floor (layout) with 
productivity and cost impact analysis; iii) the addition of a high level picking for analysis considering vehicle 
properties, costs and productivity; iv) the adoption of more performance measures as criterion such as tardiness 
and makespan since different companies may evaluate their operations differently (Ahmadi Keshavarz et al., 
2021); v) the aggregation of other control policy alternatives such as zone picking policy, the largest gap or 
composite routing policy (van Gils et al., 2018a); vi) the adoption of more warehouse internal activity on the 
evaluation such as receiving, unloading, putting away, storing, loading and shipping (Altarazi & Ammouri, 2018); 
vii) the aggregation of human factors such as fatigue, learning, routing variations or picking errors (Destro et al., 
2023); viii) the extension of the proposed framework by considering the inventory stochastic problem; and ix) 
the extension of the proposed framework by adding a method of weight aggregation, since warehouse design 
usually has more than one decision maker.
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Appendix A. Simulation studies on control policy and additional information about step-
by-step for the proposed framework.

Figure A1. Manual order picking flowchart from DES model.
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